منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust Nonparametric Estimation via Wavelet Median Regression
In this paper we develop a nonparametric regression method that is simultaneously adaptive over a wide range of function classes for the regression function and robust over a large collection of error distributions, including those that are heavy-tailed, and may not even possess variances or means. Our approach is to first use local medians to turn the problem of nonparametric regression with u...
متن کاملImproved Estimation for Robust Econometric Regression Models
The t distribution has proved to be a useful alternative to the normal distribution in many econometric regression models, especially when robust estimation is desired. In this work, we consider a nonlinear heteroskedastic Student t regression model. We suppose the observations to be independently t distributed, with the location and scale parameters for each observation being related to linear...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1984
ISSN: 0047-259X
DOI: 10.1016/0047-259x(84)90003-4